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a b s t r a c t

The optimal control for cooling a quantum harmonic oscillator by controlling its frequency
is considered. It is shown that this singular problem may be transformed with the proper
choice of coordinates to an equivalent problemwhich is no longer singular. The coordinates
used are sufficiently simple that a graphical solution is possible and eliminates the need to
use a Weierstrass-like approach to show optimality. The optimal control of this problem
is of significance in connection with cooling physical systems to low temperatures. It
is also mathematically significant in showing the power and limitations of coordinate
transformations for attacking apparently singular problems.

© 2011 Elsevier Ltd. All rights reserved.

The optimal control of a quantumharmonic oscillator is a problem of considerable interest in connectionwith the cooling
of physical systems to lower and lower temperatures [1,2].We have previously considered the control achievable by varying
only the frequency of the oscillator—the classical parametric oscillator. The findings in [2] present several surprises. The
optimal control is a fast adiabatic process, i.e. a process in which populations in each quantum state end up unchanged
despite requiring much less time than traditional adiabatic following. Although the process is reversible, one can associate
with it a potential dissipation that will ensue if the process is to be used as a prelude to a thermalization process. This
dissipation is exactly the deviation from adiabaticity in the quantum sense [2] and comes with an associated minimum
time below which some parasitic oscillations must remain in the system and add to the heat contributions in any ensuing
contact with a heat bath. Schmiedl et al. [3] consider the same problem without requiring the squared frequency, ω2, to
remain non-negative. They find that as a limit, the adiabatic process can be achieved in arbitrarily short times by going to
sufficiently negativeω2. Similar findings were reported by Chen et al. [4]. All these findings contribute to the general field of
optimally controlling physical systems and processes, which is of importance not only for technical applications [5–7] but
also for mathematical algorithms like simulated annealing [8–10].

The purpose of this letter is to present a much simpler proof of themain technical result in [2] which was forced to resort
to a lengthy argument reminiscent of the construction of the Weierstrass E-function to show directly that the solution is of
the bang–bang type for this singular problem. The proof in [2] relies on explicitly replacing sufficiently small portions of any
curve using an intermediate value of the control parameter by a small bang–bang portion operating between the endpoints.
Here we show that by using a clever change of coordinates one can circumvent most of the difficulties including the need
to proceed to the limit ω̇ → ±∞ to achieve the required jumps in ω. The literature on singular optimal control [11,12]
suggests that problems often appear singular due to apparent extra degrees of freedom which are in fact constrained by
some function of the state variables being constant. As shown below, this proves to be the case for the optimal control of a
quantum oscillator for which the von Neumann entropy SvN must remain constant. This letter shows how to implement
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a change of coordinates that eliminates one of the degrees of freedom by using the constancy of SvN . The result is a
two-dimensional problem which is no longer singular and for which the solution can be obtained in a geometrically clear
manner. The proof that all optimal solutions are of the bang–bang type also follows easily.

Physically, the problem that we treat represents an ensemble of non-interacting quantum oscillators bound by a shared
harmonic potential. We control the curvature of the potential ω(t). The energy of an individual particle is represented by
the Hamiltonian

Ĥ =
1
2m

P̂2
+

1
2
mω(t)2Q̂ 2 (1)

where m is the mass of the particle, and Q̂ and P̂ are the momentum and position operators. For convenience, we set the
massm = 1 below.

The dynamics is generated by the externally driven time dependent Hamiltonian Ĥ(ω(t)). Our description is based on the
Heisenberg picture in which our operators are time dependent. Generalized canonical states [13–17] are fully characterized
by the frequency ω and the expectation values of three time dependent operators:

Ĥ =
1
2
P̂2

+
1
2
ω2Q̂ 2 Hamiltonian (2)

L̂ =
1
2m

P̂2
−

1
2
mω2Q̂ 2 Lagrangian (3)

Ĉ =
ω

2
(Q̂ P̂ + P̂Q̂ ) position-momentum correlation. (4)

These three operators form a Lie algebra and thus completely characterize the time evolution generated by Ĥ(ω(t)) which
is an element of this algebra. Thermal equilibrium for the ensemble is characterized by ⟨L̂⟩ = 0 (equipartition) and ⟨Ĉ⟩ = 0
(no correlation).

It is enough to follow the expectation values E = ⟨Ĥ⟩, L = ⟨L̂⟩, and C = ⟨Ĉ⟩ of these operators. These expectation values
obey the dynamical equations

Ė = u(E − L) (5)

L̇ = −u(E − L) − 2ωC (6)

Ċ = uC + 2ωL (7)
ω̇ = uω (8)

where, for convenience, we have set u = ω̇/ω. u represents our (unbounded!) control for steering the system from a given
initial state

E(0) = Ei, (9)
L(0) = Li = 0, (10)
C(0) = Ci = 0, (11)
ω(0) = ωi, (12)

to a state of minimum final energy, E(τ ) → min with ωf ≤ ω(t) ≤ ωi, for all 0 ≤ t ≤ τ , where τ is the process duration.
The von Neumann entropy SvN of the system is given by a monotonically increasing function of the Casimir invariant

X =
E2

− (L2 + C2)

ω2
(13)

of the Lie algebra associatedwith the dynamics [2]. SvN andX are constant for the time evolution; their values are determined
by the initial conditions.

Minimality of the final energy subject to fixed X implies that the final values C(τ ) = Cf and L(τ ) = Lf should be equal
to zero while ω(τ) should be minimum and hence equal to ωf . The value of E(τ ) = Ef is then expressed as

Ef = ωf
√
X =

ωf

ωi
Ei. (14)

So, initial and final states of the system are given.
Many controls u(t) exist that achieve this control for sufficiently large τ , while for τ below a critical value τmin, no

controls can reach the desired final state. Accordingly, we seek the value of the control u thatminimizes the process duration
τ → min.

We begin by introducing new variables [18]

z1 =
E − L
ω2

; z2 = E + L; z3 =
C
ω

(15)
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Fig. 1. The feasible region V and the optimal solution Pi → S → Pf .

which can be used to express the old variables

E = (z2 + ω2z1)/2; L = (z2 − ω2z1)/2; C = ωz3; X = z1z2 − z23 . (16)

Let us express z3 as a function of X, z1, z2 and rewrite the system of the dynamical equation (5) using our variables, taking
into account (15), (16). The result is the following:

ż1 = 2z3 = 2

z1z2 − X, (17)

ż2 = −2ω2z3 = −2ω2

z1z2 − X . (18)

The choice of the sign on the square root in these equations is determined by the sign of C which is positive for the case
ωf < ωi discussed here. Note that the control u does not appear in these equations. In fact since u is effectively ω̇, and is
unconstrained, we can achieve any desired ω(t) (including jump discontinuities) and use v = ω2 as our new control. Thus
our change of variables has reduced the number of state variables to two and we further have

dz2
dz1

= −ω2
= −v. (19)

The boundary conditions for variables z1 and z2 are

z1i =
Ei
ω2

i
, z1f =

Ef
ω2

f
=

√
X

ωf
, z2i = Ei, z2f = Ef = ωf

√
X, (20)

where we have made use of the final state conditions from above. Note that since ωf < ωi, z1f > z1i.
This transformation of state space simplifies the problem somuch that it is possible to illustrate the solution graphically.

The duration of the transition of the system from the initial to the final state is

τ =

 z1f

z1i

dz1
2
√
z1z2 − X

. (21)

It can be calculated once we have chosen z2(z1). It follows from (21) that z2 for each z1 should maximize the product z1z2
along the optimal solution z∗

2 (z1) subject to the restrictions on v:

ω2
f ≤ v ≤ ω2

i . (22)

Consider the graph of our feasible region V shown in Fig. 1. It follows from (19) and (22) that V must be contained in
the parallelogram bounded by lines with slopes −ω2

i and −ω2
f emanating from the initial and final points. In addition, the

fact that z3 must be real implies that V includes only the portion of this parallelogram above the hyperbola z1z2 = X . Here
Pi = (z1i, z2i) is the initial state and Pf = (z1f , z2f ) is the final state. Both points are on the hyperbola z1z2 = X . It follows from
(21) that the optimal solution τ → min lies on the upper boundary of V for arbitrary initial and final points on z1z2 = X .

The optimal solution thus proceeds by an initial jump ωi → ωf , keeping ω = ωf until we reach the switch point
S, switching ω to ω = ωi until we reach Pf and then switching to ω = ωf . The bang–bang nature of the solution can
alternatively be obtained from Pontryagin’s maximum principle, but the geometrically clear solution was chosen here for
its simplicity.
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The coordinates of the switching point S = (z1S, z2S) can be found as a solution of the equations

z2S = z2i − ω2
f (z1S − z1i), z2S = z2f − ω2

i (z1S − z1f ). (23)

The result is

z1S =
ω2

i z1f − ω2
f z1i + z2f − z2i

ω2
i − ω2

f
(24)

z2S =
ω2

i z2i − ω2
f z2f + ω2

i ω
2
f (z1i − z1f )

ω2
i − ω2

f
. (25)

We can use the results to evaluate the integrals

τmin =
1
2

 z1S

z1i

dz1
[z2i − ω2

f (z1 − z1i)]z1 − X
+

 z1f

z1S

dz1
[z2f − ω2

i (z1 − z1f )]z1 − X

 , (26)

which eventually simplifies to

τmin =
1

2ωf
arccos


ω2

i + ω2
f

(ωi + ωf )2


+

1
2ωi

arccos


ω2

i + ω2
f

(ωi + ωf )2


(27)

for the minimal duration τmin of cooling the quantum oscillator to E = Ef .
The above arguments show that with a carefully chosen coordinate change that takes advantage of the constancy of

the von Neumann entropy of a quantum system one can resolve the apparently singular nature of the optimal control of
a quantum harmonic oscillator. In the transformed variables, the solution becomes simple and geometrically clear. The
simplicity achieved here however is lost once one tries to extend this approach to arbitrary initial and final states rather
than the equilibrium states used here. In that case the two-to-one nature of the transformation requires the appropriate
sign of the square root corresponding to the signs of Ci and Cf , and the cone of controllability can point the wrong way
requiring a traversal to and from the hyperbola z1z2 = X . The consideration of this more general problem is left for a future
effort.

The solution obtained achieves the equivalent of a quantum adiabatic process in fast time—on the order of one oscillation.
By contrast, the traditional adiabatic-following approach takes infinite time and is obtained by traversing along the z1z2 = X
hyperbola in Fig. 1.
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